SETS, RELATIONS & FUNCTIONS

SETS

1. SET

A set is a collection of well-defined and well distinguished objects of our perception or thought.

1.1 Notations

The sets are usually denoted by capital letters A, B, C, etc. and the members or elements of the set are denoted by lower-case letters a, b, c, etc. If x is a member of the set A, we write $x \in A$ (read as 'x belongs to A') and if x is not a member of the set A, we write $x \notin A$ (read as 'x does not belong to A,). If x and y both belong to A, we write $x, y \in A$.

2. REPRESENTATION OF A SET

Usually, sets are represented in the following two ways:

- (i) Roster form or Tabular form
- (ii) Set Builder form or Rule Method

2.1 Roster Form

In this form, we list all the member of the set within braces (curly brackets) and separate these by commas. For example, the set A of all odd natural numbers less that 10 in the Roster form is written as:

 $A = \{1, 3, 5, 7, 9\}$

- (i) In roster form, every element of the set is listed only once.
- (ii) The order in which the elements are listed is immaterial

For example, each of the following sets denotes the same set $\{1, 2, 3\}$, $\{3, 2, 1\}$, $\{1, 3, 2\}$

2.2 Set-Builder Form

In this form, we write a variable (say x) representing any member of the set followed by a property satisfied by each member of the set.

For example, the set A of all prime numbers less than 10 in the set-builder form is written as

 $A = \{x \mid x \text{ is a prime number less that } 10\}$

The symbol '|' stands for the words 'such that'. Sometimes, we use the symbol ':' in place of the symbol '|'.

3. TYPES OF SETS

3.1 Empty Set or Null Set

A set which has no element is called the null set or empty set. It is denoted by the symbol ϕ .

For example, each of the following is a null set:

- (a) The set of all real numbers whose square is -1.
- (b) The set of all rational numbers whose square is 2.
- (c) The set of all those integers that are both even and odd. A set consisting of atleast one element is called a non-empty set.

3.2 Singleton Set

A set having only one element is called singleton set.

For example, {0} is a singleton set, whose only member is 0.

3.3 Finite and Infinite Set

A set which has finite number of elements is called a finite set. Otherwise, it is called an infinite set.

For example, the set of all days in a week is a finite set whereas the set of all integers, denoted by

 $\{\dots, -2, -1, 0, 1, 2, \dots\}$ or $\{x \mid x \text{ is an integer}\}$, is an infinite set.

An empty set ϕ which has no element in a finite set A is called empty of void or null set.

SETS, RELATIONS & FUNCTIONS

3.4 Cardinal Number

The number of elements in finite set is represented by n(A), known as Cardinal number.

3.5 Equal Sets

Two sets A and B are said to be equals, written as A = B, if every element of A is in B and every element of B is in A.

3.6 Equivalent Sets

Two finite sets A and B are said to be equivalent, if n(A) = n(B). Clearly, equal sets are equivalent but equivalent sets need not be equal.

For example, the sets $A = \{4, 5, 3, 2\}$ and $B = \{1, 6, 8, 9\}$ are equivalent but are not equal.

3.7 Subset

Let A and B be two sets. If every elements of A is an element of B, then A is called a subset of B and we write $A \subset B$ or $B \supset A$ (read as 'A is contained in B' or B contains A'). B is called superset of A.

- (i) Every set is a subset and a superset itself.
- (ii) If A is not a subset of B, we write $A \not\subset B$.
- (iii) The empty set is the subset of every set.
- (iv) If A is a set with n(A) = m, then the number of subsets of A are 2^m and the number of proper subsets of A are $2^m 1$.

For example, let $A = \{3, 4\}$, then the subsets of A are ϕ , $\{3\}$, $\{4\}$. $\{3, 4\}$. Here, n(A) = 2 and number of subsets of $A = 2^2 = 4$. Also, $\{3\} \subset \{3, 4\}$ and $\{2, 3\} \subset \{3, 4\}$

3.8 Power Set

The set of all subsets of a given set A is called the power set of A and is denoted by P(A).

For example, if $A = \{1, 2, 3\}$, then

 $P(A) = \{ \phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$

Clearly, if A has n elements, then its power set P(A) contains exactly 2^n elements.

4. OPERATIONS ON SETS

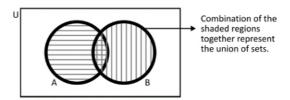
4.1 Union of Two Sets

The union of two sets A and B, written as $A \cup B$ (read as 'A union B'), is the set consisting of all the elements which are either in A or in B or in both Thus,

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

Clearly,
$$x \in A \cup B \Rightarrow x \in A \text{ or } x \in B$$
, and

$$x \notin A \cup B \Rightarrow x \notin A \text{ and } x \notin B.$$



For example, if $A = \{a, b, c, d\}$ and $B = \{c, d, e, f\}$, then $A \cup B = \{a, b, c, d, e, f\}$

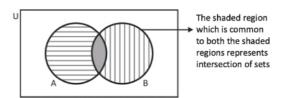
4.2 Intersection of Two sets

The intersection of two sets A and B, written as $A \cap B$ (read as 'A' intersection 'B') is the set consisting of all the common elements of A and B. Thus,

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

Clearly,
$$x \in A \cap B \implies x \in A$$
 and $x \in B$, and

$$x \notin A \cap B \Rightarrow x \notin Aor x \notin B$$
.

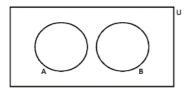


For example, if $A = \{a, b, c, d\}$ and $B = \{c, d, e, f\}$, then $A \cap B = \{c, d\}$.

SETS, RELATIONS & FUNCTIONS

4.3 Disjoint Sets

Two sets A and B are said to be disjoint, if $A \cap B = \emptyset$, i.e. A and B have no element in common.



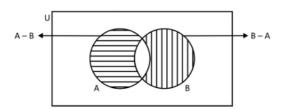
For example, if $A = \{1, 3, 5\}$ and $B = \{2, 4, 6\}$, then $A \cap B = \emptyset$, so A and B are disjoint sets.

4.4 Difference of Two Sets

If A and B are two sets, then their difference A - B is defined

 $A - B = \{x : x \in A \text{ and } x \notin B\}.$

Similarly, $B - A = \{x : x \in B \text{ and } x \notin A\}.$



For example, if $A = \{1, 2, 3, 4, 5\}$ and $B = \{1, 3, 5, 7, 9\}$ then A $-B = \{2, 4\}$ and $B - A = \{7, 9\}$.

Important Results

- (a) $A - B \neq B - A$
- The sets A B, B A and $A \cap B$ are disjoint sets (b)
- $A B \subseteq A$ and $B A \subseteq B$ (c)
- $A \phi = A$ and $A A = \phi$

4.5 Symmetric Difference of Two Sets

The symmetric difference of two sets A and B, denoted by A Δ B, is defined as

$$A \triangle B = (A - B) \cup (B - A).$$

For example, if $A = \{1,2,3,4,5\}$ and $B = \{1,3,5,7,9\}$ then

A
$$\triangle$$
 B = (A - B) \cup (B - A) = {2,4} \cup {7,9} = {2,4,7,9}.

4.6 Complement of a Set

If U is a universal set and A is a subset of U, then the complement of A is the set which contains those elements of U, which are not contained in A and is denoted by A'or Ac. Thus,

$$A^c = \{x : x \in U \text{ and } x \notin A\}$$

For example, if $U = \{1,2,3,4...\}$ and $A \{2,4,6,8,...\}$, then, $A^c =$ {1,3,5,7,...}

Important Results

a)
$$U^c = \phi$$
 b) $\phi^c = U$ c) $A \cup A^c = U$

c)
$$A \cup A^c = U$$

d)
$$A \cap A^c = \phi$$

5. ALGEBRA OF SETS

For any set A, we have

a)
$$A \cup A = A$$

b)
$$A \cap A = A$$

2. For any set A, we have

$$c) A \cup \phi = A$$

$$d) A \cap \phi = \phi$$

$$e)A \cup U = U$$

$$f(A) \cap U = A$$

3. For any two sets A and B, we have

$$g)A \cup B = B \cup A \quad h)A \cap B = B \cap A$$

For any three sets A, B and C, we have

i)
$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$j)A \cap (B \cap C) = (A \cap B) \cap C$$

For any three sets A, B and C, we have

$$k)A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$l$$
) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

- 6. If A is any set, we have $(A^c)^c = A$.
- Demorgan's Laws For any three sets A, B and C, we have

$$(A \cup B)^c = A^c \cap B^c$$

n)
$$(A \cap B)^c = A^c \cup B^c$$

o)
$$A - (B \cup C) = (A - B) \cap (A - C)$$

$$p)A - (B \cap C) = (A - B) \cup (A - C)$$

Important Results on Operations on Sets

$(i) A \subseteq A \cup B, B \subseteq A \cup B, A \cap B \subseteq A, A \cap B \subseteq B$

(ii)
$$A - B = A \cap B^c$$

(iii)
$$(A-B) \cup B = A \cup B$$

(iv)
$$(A - B) \cap B = \phi$$
 (v) $A \subseteq B \Leftrightarrow B^c \subseteq A^c$

$$(vi) A - B = B^c - A^c$$

$$(vii)(A \cup B) \cap (A \cup B^c) = A$$

$$(viii)A \cup B = (A - B) \cup (B - A) \cup (A \cap B)$$

$$(ix)A-(A-B)=A\cap B$$

$$(x)A-B=B-A \Leftrightarrow A=B$$

$$(xi)A \cup B = A \cap B \Leftrightarrow A = B$$

$$(xii)A \cap (B \land C) = (A \cap B) \land (A \cap C)$$

Example - 1

Write the set of all positive integers whose cube is odd.

- **Sol.** The elements of the required set are not even.
 - [\cdot Cube of an even integer is also an even integer]

Moreover, the cube of a positive odd integer is a positive odd integer.

⇒ The elements of the required set are all positive odd integers.
Hence, the required set, in the set builder form, is:

$$\{2k+1: k \ge 0, k \in Z\}.$$

Example - 2

Write the set $\left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8} \right\}$ in the set

builder form.

Sol. In each element of the given set the denominator is one more than the numerator.

Also the numerators are from 1 to 7.

Hence the set builder form of the given set is:

$$\{x: x = n/n+1, n \in N \text{ and } 1 \le n \le 7\}.$$

Example-3

Write the set $\{x : x \text{ is a positive integer and } x^2 < 30\}$ in the roster form.

Sol. The squares of positive integers whose squares are less than 30 are: 1, 2, 3, 4, 5.

Hence the given set, in roster form, is $\{1, 2, 3, 4, 5\}$.

Example - 4

Write the set {0, 1, 4, 9, 16,} in set builder form.

Sol. The elements of the given set are squares of integers:

$$0, \pm 1, \pm 2, \pm 3, \pm 4, \dots$$

Hence the given set, in set builder form, is $\{x^2 : x \in Z\}$.

Example-5

State which of the following sets are finite and which are infinite

(i)
$$A = \{x : x \in N \text{ and } x^2 - 3x + 2 = 0\}$$

(ii)
$$B = \{x : x \in N \text{ and } x^2 = 9\}$$

- (iii) $C = \{x : x \in \mathbb{N} \text{ and } x \text{ is even} \}$
- (iv) $D = \{x : x \in N \text{ and } 2x 3 = 0\}.$
- **Sol.** (i) $A = \{1, 2\}$.

$$[: x^2 - 3x + 2 = 0 \Rightarrow (x - 1)(x - 2) = 0 \Rightarrow x = 1, 2]$$

Hence A is finite.

(ii) $B = \{3\}$.

$$[\cdot \cdot \cdot x^2 = 9 \Rightarrow x = \pm 3. \text{ But } 3 \in \mathbb{N}]$$

Hence B is finite.

(iii) $C = \{2, 4, 6, \dots \}$

Hence C is infinite.

(iv)
$$D = \phi$$
. $\left[\because 2x - 3 = 0 \implies x = \frac{3}{2} \notin N \right]$

Hence D is finite.