Introduction

Introduction to Linear Equations

A **linear equation** is an algebraic equation in which each term is either a constant or the product of a constant and a variable. This variable is always single power form. A simple example of a linear equation with only one variable, x, may be written in the form: ax + b = 0, where a and b are constants and $a \ne 0$.

These equations are called Linear Equations in one variable. Examples:

- o 2x
- o 5/4 (x-4)
- o 3y-7
- $x^2 + 1$ is an non-linear as the variable has power more than 1.
- 5xy + 10 is not a linear equation in one variable as there are two variables

For example, if a child has 2 chocolates of 10 rupees and a 20 rupee note, the total value can be calculated using the equation 2x + 20 = 2 * 10 + 20 = 40. Here 'x' is variable and is the value of the chocolate.

Linear equation in 1 variable 2x + 20

Another example, one child buys three toys (costing rupees 20 each) from a shopkeeper but gives only 5 rupees to him. The total value of items with child will be 3y - 5, where y is the cost of one toy.

Linear equation in 1 variable

Algebraic Equations and Solutions

Algebraic Equations and Solutions

An algebraic equation is an equality involving variables. The expression on the left of equality is called LHS (Left Hand Side) and on the right is called RHS (Right Hand Side).

• From the above example, an algebraic equation is 2x + 20 = 40, where x is variable. Here 2x + 20 is LHS and 40 is RHS.

A Solution is the true value of the variables in the algebraic equations for which the equation holds true and LHS is equal to RHS.

- From the above example, algebraic equation is 2x + 20 = 40.
 - For x = 10, 2 * 10 + 20 = 40. Or, 40 = 40. Since LHS = RHS, hence x = 10 is the solution.
 - For x = 5, 2 * 5 + 20 = 40.0r, 30 = 40. Since LHS \neq RHS, hence x = 5 is not the solution.

Solving Equations

Solving Equations having linear expression/equation on one side and number on the other

There are various methods to solve the algebraic equations:

1. By addition/subtraction and multiplication/division

Example, an algebraic equation is 2x - 3 = 7

Adding 3 both sides, 2x - 3 + 3 = 7 + 3 or 2x = 10

Dividing both sides by 2, 2x/2 = 10/2 or x = 5

2. By transposing

Example, an algebraic equation is x - 3 = 7

Transposing 3 to RHS, x = 7 + 3 orx = 10

3. Using combination of above 2 methods

Example, an algebraic equation is x/3 + 5/2 = -3/2

Transposing 5/2 to RHS, x/3 = -3/2- 5/2 or x/3= -8/2 or x/3 = -4

Multiplying both sides by 3, x/3 * 3 = -4 * 3 ox = -12

Suppose there are two children whose ages are unknown. However, there are 2 conditions

related to the age are known:

1. Suppose the boy is 2 years older than the girl.

2. Sum of their ages is 14.

Suppose the age of the girl is x. Age of the boy = x + 2Sum of their ages = x + x + 2 = 14So, 2x + 2 = 14Or 2x = 12 (transposing 2 to RHS) Or x = 6 (Dividing both sides by 2)

Hence, age of the girl is 6 and the age of boy is 6+2=8. So the sum of their ages is 8+6=14.

Example

Problem: Solve the following equations:

(i)
$$6 = z + 2$$
 (ii) $\frac{3}{7} + x = \frac{17}{7}$ (iii) $1.6 = \frac{y}{1.5}$ (iv) $\frac{x}{3} + 1 = \frac{7}{15}$

Solution:

(i)
$$6 = z + 2$$

Subtracting 2 from both sides,

6-2 = z + 2 - 2

4 = z or z = 4

(ii) $\frac{3}{7}$ + x = $\frac{17}{7}$ Transposing $\frac{3}{2}$ to RHS,

$$x = \frac{17}{7} - \frac{3}{7}$$
$$x = \frac{17-3}{7} = \frac{14}{7} = 2$$

(iii) $1.6 = \frac{y}{1.5}$ Multiplying both sides by 1.5,

1.6 * 1.5 =
$$\frac{y}{1.5}$$
 * 1.5
2.4 = y or y = 2.4

(iv)
$$\frac{x}{3} + 1 = \frac{7}{15}$$

Transposing 1 to RHS

(iv) $\frac{x}{3} + 1 = \frac{7}{15}$ Transposing 1 to RHS, $\frac{x}{3} = \frac{7}{15} - 1$ $\frac{x}{3} = \frac{7-1}{15} = \frac{-8}{15}$ Multiplying both sides by 3,

$$\frac{x}{3} * 3 = \frac{-8}{15} * 3$$

 $x = \frac{-8}{5}$

Problem: The perimeter of a rectangular swimming pool is 154 m. Its length is 2 m more than twice its breadth. What are the length and the breadth of the pool?

Solution: Let the breadth be x m. The length will (2x + 2) m.

Perimeter of the swimming pool = 2(1 + b) = 154 m. $\Rightarrow 2(2x + 2 + x) = 154$ $\Rightarrow 2(3x + 2) = 154$ $\Rightarrow 3x + 2 = 77$ (Dividing both sides by 2) $\Rightarrow 3x = 77 - 2$ (Transposing 2 to RHS) $\Rightarrow 3x = 75$

⇒ x = 25 (Dividing both sides by 3)

Hence breadth of the pool is 25 m. Length of the pool = 2x + 2 = 2*25 + 2 = 52

Solving Equations having variables on both sides

Solving Equations having variables on both sides

The equations having variables in both sides are solved similar to the above.

Example, an equation is 2x - 3 = x + 2

Adding 3 both sides, 2x - 3 + 3 = x + 2 + 3 or 2x = x + 5

Subtracting x from both sides, 2x - x = x + 5 - x ox = 5

Example

Problem: Solve the following equations:

(i)
$$3x = 2x + 18$$
 (ii) $8x + 4 = 3(x-1) + 7$ (iii) $\frac{2x}{3} + 1 = \frac{7x}{15} + 3$ (iv) $2y + \frac{5}{3} = \frac{26}{3} - y$

Solution:

(i)
$$3x = 2x + 18$$

(iii)
$$\frac{2A}{3} + 1 = \frac{7A}{15} + 3$$

(iii)
$$\frac{2x}{3} + 1 = \frac{7x}{15} + 3$$

 $\Rightarrow \frac{2x}{3} - \frac{7x}{15} = 3 - 1$ (Transposing $\frac{7x}{15}$ to LHS and 1 to RHS)

$$\Rightarrow \frac{10x - 7x}{15} = 2$$

$$\Rightarrow \frac{x}{5} = 2$$

$$\Rightarrow \frac{x}{5} = 2$$

$$\Rightarrow$$
 x = 10 (Multiplying both sides by 5)

(ii)
$$8x + 4 = 3(x-1) + 7$$

$$\Rightarrow 3x - 2x = 2x + 18 - 2x \text{ (Subtracting 2x)} \Rightarrow 8x = 3x - 3 + 7 - 4 \text{ (Subtracting 4 from 2x)}$$

$$\Rightarrow 2x = 0$$

$$\Rightarrow$$
 x = 0 (Dividing both sides by 2)

(iv)
$$2v + \frac{5}{2} = \frac{26}{2} - v$$

(iv)
$$2y + \frac{5}{3} = \frac{26}{3} - y$$

 $\Rightarrow 2y + y = \frac{26}{3} - \frac{5}{3}$ (Transposing $\frac{5}{3}$ to RHS and

$$\Rightarrow$$
 3y = $\frac{21}{2}$ = 7

$$\Rightarrow$$
 y = $\frac{7}{3}$ (Dividing both sides by 3)

Problem: A positive number is 5 times another number. If 21 is added to both the numbers, then one of the new numbers becomes twice the other new number. What are the numbers?

Solution: Let the number be x and 5x. Therefore,

$$21 + 5x = 2(x + 21)$$

$$\Rightarrow$$
 21 + 5x = 2x + 42

$$\Rightarrow$$
 5x - 2x = 42 - 21 (Transposing 2x to LHS and 21 to RHS)

$$\Rightarrow$$
 3x = 21

$$\Rightarrow$$
 x = 7 (Dividing both sides by 3)

Hence the two numbers are 7 and 7*5 = 35.

Reducing equations to simpler form

Reducing equations to simpler form

Equations can be reduced to simpler form by

- · Removing the denominators of both the sides.
- · Opening the brackets.

Example, an equation is (6x + 1)/3 + 1 = (x - 3)/6

Removing the denominators by multiplying both sides by 6 because it is the LCM of the denominators of both sides,

$$\circ$$
 2(6x + 1) + 6 = x - 3

Opening the brackets,

- \circ 12x + 2 + 6 = x 3
- o 12x + 8 = x 3

Adding 3 both sides,

- o 12x + 8 + 3 = x 3 + 3
- o 12x + 11 = x

Transposing 11 to RHS and x to LHS,

- o 12x x = -11
- o 11x = -11

Dividing both sides by 11,

- o x = -1
- · Cross-Multiplication

Example, an equation is (x + 1)/(2x + 3) = 3/8

By cross-multiplication, the denominator of LHS gets multiplied with numerator of RHS and vice-versa,

• 8x + 8 = 6x + 9 (opening the brackets)

```
• 8x - 6x = 9 - 8 (transposing 6x and 8 other sides)
```

- o 2x = 1
- x = 1/2 (Dividing both sides by 2)

Problem: Solve the following linear equations: (i) $\frac{x}{2} - \frac{1}{5} = \frac{x}{3} + \frac{1}{4}$ (ii) $\frac{3t-2}{4} - \frac{2t+3}{3} = \frac{2}{3} - t$

$$[i]\frac{x}{2} - \frac{1}{5} = \frac{x}{3} + \frac{1}{4} (ii)\frac{3t-2}{4} - \frac{2t+3}{3} = \frac{2}{3} - t$$

$$\begin{array}{lll} (j) & \frac{x}{5} - \frac{1}{5} = \frac{x}{3} + \frac{1}{4} \\ \text{LCM of the denominators 2,5,3,4 is 60.} \\ \text{Hence multiplying both sides by 60.} \\ 60(\frac{x}{2} - \frac{1}{5}) = 60(\frac{x}{3} + \frac{1}{4}) \\ \Rightarrow 30x - 12 = 20x + 15 \text{ (opening the bracket)} \\ \end{array}$$

$$\Rightarrow 30x - 12 = 20x + 15$$
 (opening th

$$60(\frac{x}{2} - \frac{1}{5}) = 60(\frac{x}{3} + \frac{1}{4})$$

$$\Rightarrow 30x - 12 = 20x + 15 \text{ (opening the bracket)}$$

$$\Rightarrow 30x - 20x = 15 + 12 \text{ (transposing 20x and 12 to other sides)}$$

$$\Rightarrow 10x = 27$$

$$12(\frac{x}{4} - \frac{x}{3}) = 12(\frac{x}{3} - t)$$

$$\Rightarrow 3(3t \cdot 2) - 4(2t + 3) = 8 - 12t$$

$$\Rightarrow 9t - 6 - 8t - 12 = 8 - 12t \text{ (opening the brackets)}$$

$$\Rightarrow t + 12t = 8 + 18 \text{ (transposing -12t and -18 to other sides)}$$

$$\Rightarrow 10x = 27$$

$$\Rightarrow x = \frac{27}{10}$$
 (Dividing both sides by 10)
$$\Rightarrow 13t = 26$$

$$\Rightarrow t = 2$$
 (Dividing both sides by 13)

(ii)
$$\frac{3t-2}{4} - \frac{2t+3}{3} = \frac{2}{3} - t$$

$$12(\frac{3t-2}{4}-\frac{2t+3}{3})=12(\frac{2}{3}-t)$$

$$\Rightarrow$$
 3(3t-2) - 4(2t+3) = 8 - 12t

$$\Rightarrow$$
 t = 2 (Dividing both sides by 13